A Liouville-Type Theorem for the Lane–Emden Equation in a Half-space

نویسندگان

چکیده

Abstract We prove that the Dirichlet problem for Lane–Emden equation in a half-space has no positive solution is monotone normal direction. As consequence, this does not admit any classical bounded on finite strips. This question long history and our result solves long-standing open problem. Such nonexistence was previously available only solutions or under restriction power nonlinearity. The extends to general convex nonlinearities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Liouville-type theorem for Schrödinger operators

In this paper we prove a sufficient condition, in terms of the behavior of a ground state of a symmetric critical operator P1, such that a nonzero subsolution of a symmetric nonnegative operator P0 is a ground state. Particularly, if Pj := −∆ + Vj , for j = 0, 1, are two nonnegative Schrödinger operators defined on Ω ⊆ R such that P1 is critical in Ω with a ground state φ, the function ψ 0 is a...

متن کامل

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation

We consider the semilinear parabolic equation ut = ∆u+ up on RN , where the power nonlinearity is subcritical. We first address the question of existence of entire solutions, that is, solutions defined for all x ∈ RN and t ∈ R. Our main result asserts that there are no positive radially symmetric bounded entire solutions. Then we consider radial solutions of the Cauchy problem. We show that if ...

متن کامل

A Priori Bounds and a Liouville Theorem on a Half-space for Higher-order Elliptic Dirichlet Problems

We consider the 2m-th order elliptic boundary value problem Lu = f(x, u) on a bounded smooth domain Ω ⊂ R with Dirichlet boundary conditions u = ∂ ∂ν u = . . . = ( ∂ ∂ν )u = 0 on ∂Ω. The operator L is a uniformly elliptic operator of order 2m given by L = ( − ∑N i,j=1 aij(x) ∂ ∂xi∂xj )m + ∑ |α|≤2m−1 bα(x)D . For the nonlinearity we assume that lims→∞ f(x,s) sq = h(x), lims→−∞ f(x,s) |s|q = k(x)...

متن کامل

A Liouville type theorem for a class of anisotropic equations

In this paper we are dealing with entire solutions of a general class of anisotropic equations. Under some appropriate conditions on the data, we show that the corresponding equations cannot have non-trivial positive solutions bounded from above.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnaa392